BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Table of all Projects
     
 

BPN853: Tethered Bacteria-Based Biosensing

Project ID BPN853
Website
Start Date Tue 2017-Jan-24 16:11:05
Last Updated Wed 2017-Jul-19 10:30:28
Abstract Though the chemotaxis sensing system of emph{Escherichia coli} is known to approach fundamental physical limits for biosensing, few attempts have been made to co-opt the system as the front end for a biohybrid sensor. We propose a biohybrid sensor that monitors chemotactic bacterial flagellar motor (BFM) rotation speed and direction to infer analyte concentration for a low-power, fast, and sensitive response. We present the design and fabrication of a four point impedimetric array that uses current injection electrodes to circumvent electrode polarization screening, enabling solution resistance monitoring within a four-micron by four-micron region. We also demonstrate the first lithographically patterned silica shaft encoders for the BFM, which utilize localized biotin-avidin chemistry to selectively bind to the BFM and encode rotation. When these two components are integrated by bringing the rotating shaft encoders in proximity to the microelectrode array, they will enable an electrochemical method for observing the BFM. Such an impedance-based biohybrid sensor obviates the need for a microscope and in principle may be multiplexed and scaled to large arrays of BFMs, enabling the development of deployable low-power and fast sensing systems that directly observe the BFM to infer analyte concentration.
Status Continuing
Funding Source Office of Naval Research (ONR)
IAB Research Area BioMEMS
Researcher(s) Tom J. Zajdel
Advisor(s) Michel M. Maharbiz
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide PDF | VIDEO
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: October 18, 2017, 11:37 am